A solar flare on Oct. 22, 2012, as captured by NASA’s Solar
Dynamics Observatory (SDO) in the 131 Angstrom wavelength. This wavelength of
light is used for observing solar material heated to 10 million degrees Kelvin,
as in a solar flare. The wavelength is typically colorized in teal, as it is
here.
(Credit: NASA/SDO/Goddard)
“X-class” denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, and on. An X-class flare of this intensity can cause degradation or blackouts of radio communications for about an hour.
Solar flares are powerful bursts of radiation. Harmful
radiation from a flare cannot pass through Earth’s atmosphere to physically
affect humans on the ground, however — when intense enough — they can disturb
the atmosphere in the layer where GPS and communications signals travel. This
can disrupt radio signals for anywhere from minutes to hours.
Video of the Oct. 22, 2012, solar flare as captured by NASA’s Solar Dynamics Observatory (SDO) in the 131 and 304 Angstrom wavelengths.
The National Oceanic and Atmospheric Association, which is the United States government’s official source for space weather forecasts and alerts, categorized the radio blackout associated with this flare as an R3, on a scale from R1 to R5. It has since subsided.
By observing the sun in a number of different wavelengths,
NASA’s telescopes can tease out different aspects of events on the sun. These
four images of a solar flare on Oct. 22, 2012, show from the top left, and
moving clockwise: light from the sun in the 171 Angstrom wavelength, which
shows the structure of loops of solar material in the sun’s atmosphere, the
corona; light in 335 Angstroms, which highlights light from active regions in
the corona; a magnetogram, which shows magnetically active regions on the sun;
light in the 304 Angstrom wavelength, which shows light from the region of the
sun’s atmosphere where flares originate.
Credit: NASA/SDO/Goddard
Credit: NASA/SDO/Goddard
Increased numbers of flares are quite common at the moment, since the sun’s normal 11-year activity cycle is ramping up toward solar maximum, which is expected in 2013. Humans have tracked this solar cycle continuously since it was discovered in 1843, and it is normal for there to be many flares a day during the sun’s peak activity. The first X-class flare of the current solar cycle occurred on Feb. 15, 2011 and there have been 15 X-class flares total in this cycle, including this one. The largest X-class flare in this cycle was an X6.9 on Aug. 9, 2011. This is the 7th X-class flare in 2012 with the largest being an X5.4 flare on March 7.
This flare did not have an associated Earth-directed coronal
mass ejection (CME), another solar phenomenon that can send solar particles
into space and affect electronic systems in satellites and on Earth.
Contacts and sources:
Karen C. Fox
NASA’s
Goddard Space Flight Center, Greenbelt, Md.
wa....
ReplyDeletewoo...The sun disease is many X-class...
ReplyDeleteTks for sharing!Useful information!
ReplyDeleteOh,it seem that the sun disease is realy very critical.
ReplyDeleteSUN DISEASE !?
ReplyDeletewo!!
ReplyDeletewa!!!
ReplyDeletethanks
ReplyDeletePLANET X closest approach to Earth in 2013-2014
ReplyDelete